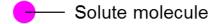


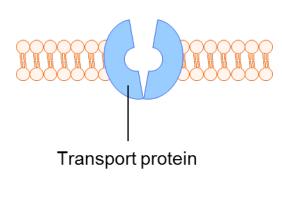
What's on the menu? Fundamentals of yeast nutrition

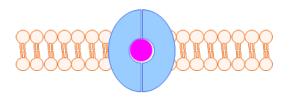
Dawn Maskell International Centre for Brewing & Distilling Heriot-Watt University Edinburgh, UK

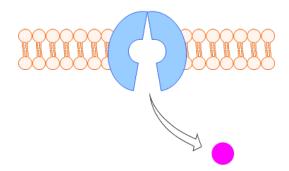
What is it and why do we care?

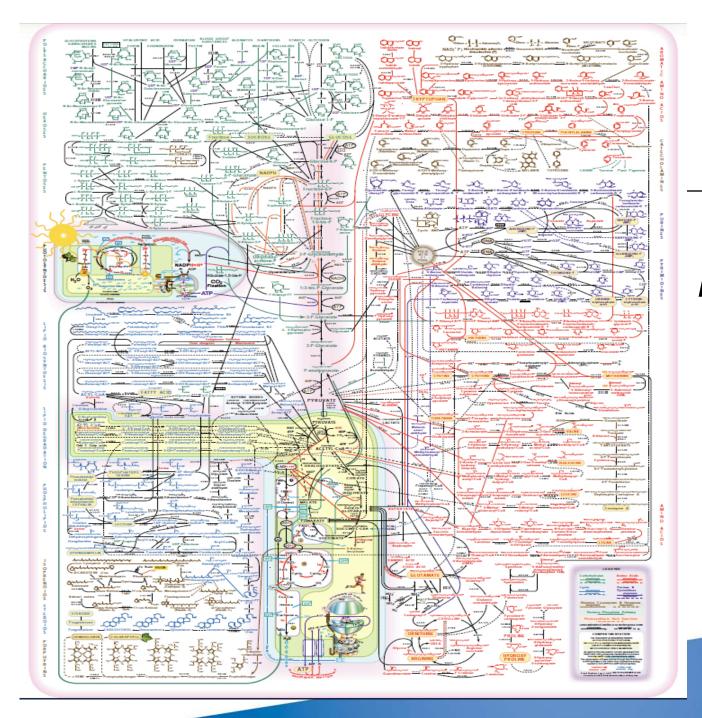
YEAST NUTRITION


Food, glorious food!


wort yeast beer


How do yeast eat?


Outside of the cell



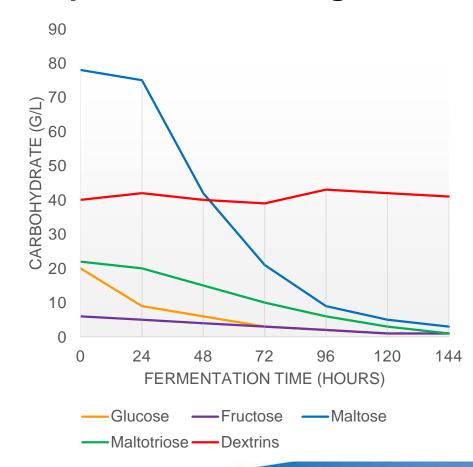
How does yeast make alcohol?

Provided by Prof. G. Walker

Distinctly Ambitious www.hw.ac.uk

YEAST DIET: THE ESSENTIALS

Brewers' wort


- Carbohydrates
 - Glucose
 - Fructose
 - Sucrose
 - Maltose
 - Maltotriose
 - Maltotetraose and larger dextrins
- Vitamins
- Nucleic acids
- Hop components

- Free Amino Nitrogen (FAN)
 - Amino acids
 - Ammonia
 - Small peptides
- Glycopeptides and proteins
- Water
- lons
- Melanoidins

Carbohydrates

Uptake Of Wort Sugars

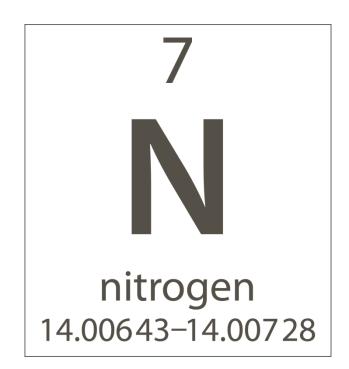
Wort Fermentable Sugars

- Fructose ~ 2 %
- Glucose ~ 8 %
- Sucrose ~ 6 %
- Maltose ~ 45 %
- Maltotriose ~ 10 %

Oxygen: opportunity and threat

 Absence of oxygen – only fermentative growth

 Synthesis of sterols and UFA's (biomass – membrane components essential for growth)


 Oxygen depleted – division and growth restricted – become fully fermentative

Free Amino Nitrogen

- Source of nitrogen
- Levels?
- Ale yeast higher FAN needs than lager
- Protein stand/rest

Valine: the villain of the piece?

- Vicinal diketones byproducts of valine and isoleucine
- Supplementation reduces diacetyl formation!

Proteins: friend or foe?

Nutrition

- But only as amino acids or small peptides
 - Cell structures
 - Higher alcohols

Haze

- Protein-polyphenol complexes forming permanent or nonpermanent hazes
- Foam
 - Foam positive proteins contribute to head formation

The role of micronutrients

SOMETHING IN THE WATER?

The need for ions

Ion	Function
Zinc	Essential for growth, enzyme co-factor, stress protectant against ethanol toxicity
Manganese	Enzyme co-factor, cell and organelle structure
Magnesium	Essential in many enzymes involving ATP, cell and organelle structure
Calcium	Stimulates growth, depresses wort pH, and has a role in flocculation
Copper	Enzyme co-factor, binds to some proteins
Potassium	Component of transport system for nutrient uptake
Phosphate	Synthesis of organic phosphorus containing compounds
Sulphate	Synthesis of S – containing compounds

Other roles of ions

Zinc	Protect against ethanol stress
Magnesium	Stabilising membrane, inhibit stress induced proteins
Calcium	Flocculation at end of fermentation, protect against ethanol stress
Copper	Eliminate H ₂ S from beer as insoluble hydrogen sulfide
Chloride	Inhibitory at high concentrations
Iron	Toxic to yeast

VITAMINS

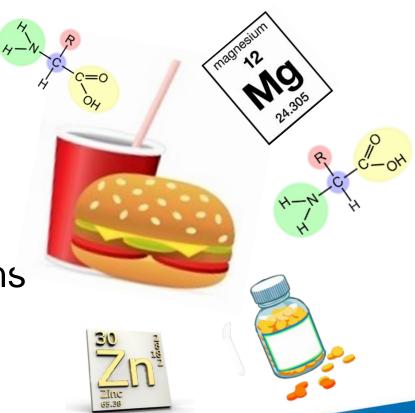
Vitamins

 Many essential vitamins cannot be synthesised by yeast

- Biotin
- Pantothenic acid
- Nicotinic acid
- Thiamine (Vitamin B)

NOT ALL NUTRITION IS EQUAL

Wort Soup


- Nutritional variation
 - Strain specific
 - Between breweries (same strain)
 - Water supply
 - Grist composition and adjunct use
 - Brewhouse design
 - Environmental conditions
 - Brew length and type of beer produced

- Yeast ignores
 - Dextrins
 - β-glucans
 - Pentosans
 - Large proteins
 - Phenolics

Yeast Food

- Prevent slow fermentations
- Useful for high adjuncts/low nitrogen worts
- Consistent fermentations

PRACTICAL CONSIDERATIONS

Practical considerations

- Ethanol stress
- Using antifoams
- Use of stabilisation products



Source: www.bsgcraftbrewing.com

The fundamental takeaway messages

THE YEAST MENU

Takeaway menu

- The diversity of yeast nutritional needs
- What can be essential can also be toxic in excess
- Supplementation can make up for deficiencies

Any questions?

THANK YOU