Fermentation and Flavor
A perspective on sources and influence

Mark Sammartino
MBAA Technical Director
Content of Discussion

• Four Aspects of Flavor
• Basis of Flavor in Fermenting
 – Organic Acids
 – Fatty Acids
 – Nitrogen Metabolism
 – Esters
 – Carbonyls
 – Sulfur Compounds
• Summary
Flavor

• Four Categories of Impact
 – Taste
 • Four distinctive tastes:
 – Sweet Sour, Salt, and Bitter
 – Aroma
 – Sensation
 – Emotion
Basis of Flavor Compounds

• Outside of Fermenting
 – Water Treatments (salty), hop compounds (bitter), other additives; spices, fruit, priming sugars (sweet) etc.

• Inside Fermenting
 – Yeast Growth
 • Carbohydrate metabolism for energy
 • Nitrogen metabolism for amino acids and other ammonia compounds
 • Lipid metabolism for cell wall structure
 – Other minor compounds
Aroma

• Complex distillation of the many individual molecules

• Primary Molecules of this discussion
 – Alcohols:
 • Ethanol derived via anaerobic carbohydrate metabolism
 • Other alcohols derived from catabolic and anabolic production of amino acids
 – Esters:
 • Produced via catalysis of equivalent alcohols being utilized as a receptor for excess acetyl CoA
Aroma con’t

• Primary molecules con’t
 – Vicinal Diketones:
 • Formed within the anabolic processes to make specific amino acids: Valine and Isoleucine
 – Acetaldehyde:
 • Formed as the immediate precursor to ethanol
 – Short Chain Fatty Acids:
 • Formed as intermediates in the synthesis of lipid membrane components
 – Sulfur Compounds:
 • DMS originates from S-methylmethionine (SMM) produced during germination of barley
 • H2S and SO2 formed in the breakdown of sulfur amino acids and the reduction of inorganic sources like sulfate and sulfite for AA anabolic processes
Glucose

- Tricylglycerols
- Phospholipids
- Fatty acids, Lipids

Dihydroxy Acetone Phosphate

Glyceraldehyde → Glycerol → Tricylglycerols Phospholipids

Pyruvate

- Lactic Acid
- Acetaldehyde

Acetyl S CoA

Krebs (TCA) Cycle

- Alpha Acetolactate
- Alpha Hydroxy Butyrate

Organic Acids

- Citrate, Succinate, Oxaloacetate, Malate, Lactate
- 2-hydroxoglutarate

Keto acid Pool

- Diacetyl
- 2,3 Pentadione

Ethanol & CO2

Highly Simplified Metabolic Pathways

Amino Acids

- Proteins
- Nucleic Acids

Fusel Alcohols

- Aldehydes
- Esters

Amino Acids

- Acetyl S CoA

Highly Simplified Metabolic Pathways

Alpha Oxoglutarate
ORGANIC ACIDS
Glucose

- Dihydroxy Acetone Phosphate
- Glyceraldehyde
- Glycerol
- Triclyglycerols Phospholipids

Fatty acids, Lipids

Triclyglycerols Phospholipids

Pyruvate

- Lactic Acid
- Acetaldehyde
- Ethanol & CO2
- Acetyl S CoA
- Krebs (TCA) Cycle
- Alpha Acetolactate
- Alpha Hydroxy Butyrate
- Diacetyl
- 2,3 Pentandione

Acetyl S CoA

- Krebs (TCA) Cycle
- Alpha Oxoglutarate

Keto acid Pool

Organic Acids
- Citrate, Succinate, Oxaloacetate, Malate, Lactate
- 2-hydroxglutarate

Esters

Fusel Alcohols

Aldehydes

Amino Acids

Proteins

Nucleic Acids

Organic Acid Pathways
Organic Acids

• Sour taste: attributed to Organic Acids
 – Lower the pH: H+ ion causes the sour character
 – Sourness not linear to pH, more associated to acid concentration and titratable acidity (associated and disassociated H+ ions considered)
 – Relative Sourness:
 • Citric > Malic > Succinic > Lactic > Acetic
 – Can add bitterness, saltiness and astringency as well (Succinate)
Organic Acids

- Majority formed a repressed tricarboxylic acid cycle
- Excretion into beer explains
 - Lack of mechanism of further oxidation,
 - A need to maintain a neutral intracellular pH
 - Not needed for further anabolic reactions.
- Increased temps and yeast growth promote formation.
 - Increased inefficiency of metabolism and cells focus on growth activated the suppressed TCA cycle
LIPIDS (FATTY ACID) METABOLISM
Fatty Acid Pathways

- Glucose
 - Dihydroxy Acetone Phosphate
 - Glyceraldehyde
 - Glycerol
 - Tricylglycerols Phospholipids

- Pyruvate
 - Lactic Acid
 - Acetaldehyde
 - Ethanol & CO2
 - Acetyl S CoA
 - Krebs (TCA) Cycle
 - Alpha Acetolactate
 - Alpha Hydroxy Butyrate
 - Diacetyl
 - 2,3 Pentandione

- Acetyl S CoA
 - Amino Acids
 - Keto acid Pool
 - Organic Acids
 - Citrate, Succinate, Oxaloacetate, Malate, Lactate 2-hydroxglutarate
 - Acetoin

- Tricylglycerols Phospholipids
- Fatty acids, Lipids
- Esters
- Fusel Alcohols
- Aldehydes
- Amino Acids Proteins Nucleic Acids
- Amino Acids
Lipid (Fatty Acid) Metabolism

- Wort fatty acids and sterols
 - are absorbed by yeast immediately
- Yeast must synthesize sterols and unsaturated fatty acids in the initial stages of fermentation when oxygen is available (oxygen limited process)
- Growth of yeast in anaerobic phase dilutes pre-formed and absorbed pool between mother and progeny cells
- Cells divide until FA and sterol depletion limits growth
Lipid (Fatty Acid) Metabolism

• 90% of wort fatty acids are accounted for by Palmitic (16:0), Linoleic (18:2), Stearic (18:0), and Oleic (18:1)

• In beers 75-80% of fatty acids are Caprylyc (8:0), Caproic (6:0), and Capric (10:0)

• Concentration from wort to beer increases 13-65%.

• Assumed that long chain fatty acids are assimilated into structural lipids and shorter chain fatty acids are releases as by products.
Lipid Metabolism con’t

• Increased yeast growth promotes the formation of fatty acids in beer
 – Higher temps. Increased wort oxygenation, and possibly increased pitching rates increase levels

• Short chain FFA’s (C8-C14) are toxic to yeast
 – Due to non-specific detergent like disruption of cell membranes, therefore not excreted into beer
 – These are esterified to become part of the ester pool (discussed later)

• Elevated levels are associated with old cheese, waxy, goat like and fatty flavors.
NITROGEN METABOLISM
Glucose
 ↓
Glyceraldehyde
 ↓
Dihydroxyacetone Phosphate
 ↓
Glyceraldehyde
 ↓
Glycerol
 ↓
Tricylglycerols Phospholipids

Pyruvate
 ↓
Acetaldehyde
 ↓
Ethanol & CO2

Acetyl S CoA
 ↓
Krebs (TCA) Cycle
 ↓
Alpha Acetolactate
 ↓
Alpha Hydroxybutyrate
 ↓
Diacetyl
 ↓
2.3-Pentandione

Organic Acids
 ↓
Citrate, Succinate, Oxaloacetate, Malate, Lactate 2-hydroxoglutarate

Keto acid Pool

Amino Acids
 ↓
Proteins
 ↓
Nucleic Acids

Nitrogen Metabolism
Nitrogen Metabolism

• Nitrogen compounds in wort
 – do not effect the rate of yeast growth
 – but effect extent of yeast growth at a specific rate.

• Amino acid metabolism has important role in the formation of flavor compounds
 – specifically higher alcohols and esters.

• Nitrogen Metabolism is both Catabolic and Anabolic
Nitrogen Metabolism con’t

• Catabolic (50%):
 – Yeast uptake amino acids, deaminate to alpha keto acids and used as skeletons to make amino acids

• Anabolic (50%):
 – Thru pyruvate and with the formation of specific amino acids or directly to alpha keto acids

• Once the alpha keto acid is available it is transaminated to the specific amino acid
Amino Acid Uptake Impact on Flavor

- Amino Acids are assimilated in groups:
 - **Group A** is taken up quickly
 - Arginine, Asparagine, Aspartate, Glutamate, Glutamine, Lysine, Serine, Threonine
 - **Group B** is taken up slowly and throughout the fermentation:
 - Histidine, Isoleucine, Leucine, Methionine, Valine, Cysteine*
 - **Group C** is taken up after Group A is fully utilized:
 - Alanine, Ammonia, Glycine, Phenylalanine, Tyrosine, Tryptophan
 - **Group D** is only taken up in aerobic conditions:
 - Proline

*assumed part of group B
Amino Acids to Esters and Alcohols

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>AA Group</th>
<th>Keto Acid</th>
<th>Aldehyde</th>
<th>Alcohol</th>
<th>Ester</th>
<th>Aroma</th>
<th>Threshold</th>
<th>Conc. In Beer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>C</td>
<td>Pyruvic Acid</td>
<td>Acetaldehyde</td>
<td>Ethyl Alcohol</td>
<td>Ethyl acetate</td>
<td>Nail polish/solvent</td>
<td>30 ppm</td>
<td>8-70 ppm</td>
</tr>
<tr>
<td>Threonine</td>
<td>A</td>
<td>Ketobutyric Acid</td>
<td>Propionaldehyde</td>
<td>n-Propyl Alcohol</td>
<td>n-propyl acetate</td>
<td>Pears</td>
<td>30ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Isopropyl Alcohol</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Isopropyl acetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tutti fruity/apple banana/sl Solvent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norvaline</td>
<td>B</td>
<td>Butyraldehyde</td>
<td>n-Butyl Alcohol</td>
<td>Butyl acetate</td>
<td>Tropical fruit/pineapple/juicy fruit</td>
<td>0.05-0.4ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valine</td>
<td>B</td>
<td>Ketoisovaleric Acid</td>
<td>Isobutyaldehyde</td>
<td>Isobutyl Alcohol</td>
<td>Isobutyl acetate</td>
<td>Sweet fruity/tr. Banana</td>
<td>1.6ppm</td>
<td>0.03-0.25ppm</td>
</tr>
<tr>
<td>Methionine</td>
<td>B</td>
<td>Ketomethiobutyric Acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norleucine</td>
<td>B</td>
<td>Valeraldehyde</td>
<td>n-Amyl Alcohol</td>
<td>Amyl acetate</td>
<td>Bananas/apples/pear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucine</td>
<td>B</td>
<td>Ketoisocaproic Acid</td>
<td>Isovaleraldehyde</td>
<td>Isoamyl Alcohol</td>
<td>Isoamyl acetate</td>
<td>Banana candies/circus peanuts</td>
<td>1.6 ppm</td>
<td>0.4-6ppm</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>B</td>
<td>Ketomethylvaleric Acid</td>
<td></td>
<td>Amyl Alcohol</td>
<td>Amyl acetate</td>
<td>Banana pear/Banana apple</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hexanal</td>
<td>n-Hexyl Alcohol</td>
<td>Ethyl Hexanoate</td>
<td>Red apple/anise</td>
<td>0.23ppm</td>
<td>0.1-1.5ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heptanal</td>
<td>n-Heptyl Alcohol</td>
<td>Ethyl Hepanoate</td>
<td>Apricot/cherry/grape/rasberry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartic Acid</td>
<td>A</td>
<td>Oxalactetic Acid</td>
<td>Asparagine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutamic Acid</td>
<td>A</td>
<td>Ketoglutaric Acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>C</td>
<td>Phenylpyruvic Acid</td>
<td>Phenylethyl Alcohol</td>
<td>2-phenyl-ethyl acetate</td>
<td>Rose/floral</td>
<td>3.8ppm</td>
<td>0.1-1.5ppm</td>
<td></td>
</tr>
<tr>
<td>Tyrosine</td>
<td>C</td>
<td>Hydroxyphenylpruvic Acid</td>
<td></td>
<td>Tyrosol</td>
<td>4-hydroxyphenylacetate</td>
<td>Rose/floral</td>
<td>.04ppm</td>
<td></td>
</tr>
<tr>
<td>Tryptophan</td>
<td>C</td>
<td>Glycoaldehyde</td>
<td>Tryptophol</td>
<td>Ethyl-3-indolacetate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serine</td>
<td>A</td>
<td>Hydroxypyruvic Acid</td>
<td>Glyoxal</td>
<td>Glycol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Amino Acid Uptake Impact on Flavor con’t

• Group B and C contain the higher intensity ester potential amino acids
 – Isoleucine → Amyl acetate: Banana/Apple/Pear
 – Leucine → Isoamyl acetate: Circus Peanuts
 – Valine → Isobutyl acetate: Sweet Fruity
 – Phenylalanine → Phenylethyl acetate: Rose/Floral
 – Tryptophan → Ethyl-3-indolacetate: Jamine/Floral
 – Tyrosine → 4-Hydroxyphenylacetate: Rose/Floral

• Catabolic processes w/ Methionine and Cysteine
 – can provide a source for production of H2S and SO2
Nitrogen Metabolism Impact on Flavor

- Levels of FAN can:
 - Impact the potential esters formed
 - High FAN reduces need for Category 2 and 3 AA in Catabolic Processes
 - Impact the level of sulfur compounds
 - Low FAN and/or high levels of Methionine and Cysteine can increase sulfur compounds from catabolic processes
 - Impact Diacetyl production (discussed later)

- Awareness around levels for control
HIGHER ALCOHOLS
Glucose

- Tricylglycerols
- Phospholipids
- Fatty acids, Lipids

Pyruvate

- Lactic Acid
- Dihydroxy Acetone Phosphate
- Acetaldehyde
- Ethanol & CO2

Acetyl S CoA

- Krebs (TCA) Cycle
- Alpha Acetolactate
- Alpha Hydroxy Butyrate
- Diacetyl
- 2.3 Pentandione
- Organic Acids (Citrate, Succinate, Oxaloacetate, Malate, Lactate, 2-hydroxglutarate)

Amino acids

- Proteins
- Nucleic Acids

Higher Alcohols

- Fusel Alcohols
- Aldehydes
- Esters
- F.A. Alcohols
Higher Alcohols

• Higher Alcohols:
 – Derived from two different metabolic pathways
 • Nitrogen metabolism
 – excess of keto acids, are decarboxylated to create their specific alcohol
 • Lipid metabolism
 – released if there is excess or fatty acid biosynthesis ceases and there is a need to reclaim CoA
 – C8-C14 organic acids are toxic to yeast and may be transformed to esters to make them non-toxic before release.
 – C2-C6 organic acids are reduced and released in the same manner, to maintain the balance between acetyl CoA and CoASH
Flavor Impact of Higher Alcohols

- Can be broken into three categories
 - Fatty acid alcohols
 - Aliphatic alcohol
 - Aromatic alcohols

- Consider unpleasant for the most part
 - Fatty Acid: Waxy, alcohol, solvent
 - Hexanol, Octanol, Decanol, etc.
 - Aliphatic: Solvent, harsh, hot
 - Propanol, Amyl alcohol, Isoamyl alcohol, Butanol, etc.
 - Aromatic: Mixed, some pleasant like phenylethyl alcohol- floral/rose
 - Tyrosol, Tryptophol, etc.
Higher Alcohol Process Control

• Higher Alcohol Control:
 – Markedly impacted thru the temperature of fermentation: Higher Temp = more formed
 – Excessive aeration or oxygenation promote yeast growth and therefore promote higher alcohol formation
ESTERS

\[R^1 \text{CO}_2R^2 \]
Ester Formation
Esters

• Esters:
 – Are formed via two metabolic pathways similar to higher alcohols.
 • Thru amino acid synthesis following fusel alcohol formation, w/ esterification via excess acetyl CoA
 • Thru esterification of fatty acids as a means of detoxification or to maintain acetyl CoA balance.
 – Are produced from their equivalent alcohol
 – Formed under conditions when Acetyl CoA is not required as the prime building block of key cell components
 • Specifically: when the synthesis of lipids and amino acid metabolism is shut down or depressed
Ester con’t

• Control of Ester Levels:
 – Increase temp: increase in ester formation
 • Increases frequency of unbalanced Acetyl CoA pool
 – Lower aeration: higher ester formation
 • Lower O2 means lower sterol and fatty acid biosynthesis, hence more Acetyl CoA
 – Any restriction in cell growth will elevate esters
 – Low FAN: decrease esters
 • Acetyl CoA is tied to nitrogen metabolism
 – Trub rich wort: lower esters
 • Higher fatty acid content, more cell production
 – Higher levels produced in high gravity worts
 • Possibly an impact on the enzyme acetyl alcohol transferase
CARBONYLS;
ACETALDEHYDE AND VDK’S
Carbonyl Pathways
Carbonyls

• Nearly 200 carbonyl compounds have been detected in beer
• Of importance are Acetaldehyde, and VDK’s
• Aldehydes
 – Have flavor thresholds are significantly higher than corresponding alcohols
 – Almost all are described with unpleasant flavor descriptors: grassy, green leaves, cardboard.
 – Some are formed during mashing and boiling, other arise from the same pathways discussed with higher alcohol formation
Acetaldehyde

• Needs to be considered separately to other longer chain aldehydes
 – Because of its importance as an intermediate in the formation of alcohol and CO2
• Has a flavor threshold of 10-20 ppm
• Possesses an unpleasant grassy, green apple to pumpkin flavor
• Formation occurs in mid fermentation during active yeast growth
• Accumulation is tied to the kinetic properties of the enzymes associated to it’s formation and dissimulation
Acetaldehyde

- High levels in finished beer are associated with non-standard performance
- Poor yeast quality or early separation from yeast are the main issues
- High temperature fermentations, over oxygenation, and high pitching rates have also been tied to elevated levels.
- May also be associated with yeast stress by toxicity
 - Formation of Schiff bases w/ amino residues leading to deactivation of enzyme pathways associated w/synthesis of proteins and nucleotides.
Vicinal Diketones

- Diacetyl (2,3-butanedione) and 2,3-pentan edione are the most important
- Both possess a flavor of butter/butterscotch
 - Diacetyl threshold approx. 0.15 ppm
 - 2,3-pentan edione threshold approx. 0.9 ppm
 - Contributes to overall palate in low levels and can be considered undesirable at elevated levels
- Formed as an indirect result of biosynthesis of valine and isoleucine
 - During early to mid fermentation alpha acetohydroxy acids are excreted from the cell
 - These undergo spontaneous decarboxylation forming diacetyl and 2,3-pentan edione
 - Late stages of fermentation these are picked up by the cell and reduced to acetoin and 2,3-butanediol, both much less flavor active
Vicinal Diketones con’t

- Elevated levels of “D” are associated with:
 - Rapid and extensive growth rates
 - High levels of FAN (Utilization of AA available)
 - High oxygenation
 - High temperature fermentations
 - High trub levels
 - Elevated pitching rates
 - Incomplete reduction late in fermentation
 - Stressed yeast
 - Early yeast separation
SULFUR COMPOUNDS
Sulfur Compounds

• There are many sulfur compounds related to beer, three principle compounds are critical:
 – DMS from DMSO
 – Hydrogen Sulfide (H2S)
 – Sulfur Dioxide

• Present in wort roughly 100 ppm sulfur:
 – Approx. 50 ppm organic sulfur
 • From amino acids (methionine, cysteine), vitamins (biotin, thiamine), and sulfur containing proteins and fragments
 – Approx. 50 ppm sulfur as sulfate ion from grain
Sulfur Metabolism

• Yeast needs sulfur for certain coenzymes, vitamins and amino acids
 – 0.2-0.9% cell dry weight

• Sulfur source preferred by yeast is from breaking down methionine
 – And other organic sources

• Second major source is from conversion of wort sulfates to sulfites to sulfides
 – Little is used in the presence of sulfur containing amino acids
Hydrogen Sulfide and Sulfur Dioxide

- H2S and SO2 arises in the beer from the breakdown of organic sources and sulfate conversion
 - Sulfate to sulfite: SO2
 - Sulfite to sulfide: H2S
 - Sulfide incorporated into Amino Acid Metabolism
- Max rate of production occurs with max growth rate
- Factors that utilize sulfur compounds within fermentations will help reduce
 - Presence of wort lipids, increased oxygenation, increased temperatures.
- Factors that hinder fermentation also increase levels of retained sulfur compounds
 - Vigorous fermentations are needed to purge with CO2
 - Poor yeast health, lack of vitamins and cofactors (zinc) and fermentor top pressure will exacerbate.
Dimethlysulfide (DMS)

- DMS comes from two sources:
 - From S-methylmethionine (SMM) which decomposes to DMS upon heating (outside this discussion)
 - Reduction of dimethyl sulphoxide (DMSO) by yeast in fermentation
- DMSO comes from the malt and is a factor of kilning practices
 - It is heat stable and survives the hot wort phases
- Conversion by yeast to DMS occurs primarily when amino sources of sulfur have been depleted
- Other factors also seem to have an impact on the conversion
 - Cooler fermentation temperatures, high gravity worts, high pH and deep fermentation vessels
Flavor Summary

• Organic Acids:
 – General- Sour, tart
 – Succinate: Salty, Bitter
• Fatty Acids:
 – C6-C10: Waxy, Old, Fatty
• Esters: Various Fruit and Floral
• Higher Alcohols:
 – Fatty Acid Alcohols: Waxy, Alcohol, Solvent
 – Aliphatic: Solvent, Banana
 – Aroma: Floral (rose)
• Aldehydes (acetaldehyde): Grassy, Green Leaves and Apples, Pumpkin
• Diacetyl: Butter, Butterscotch
• SO2: Skunky
• H2S: Burnt Match
• DMS: Cream Corn
<table>
<thead>
<tr>
<th>Influence Summary</th>
<th>Organic Acids</th>
<th>Fatty Acids</th>
<th>Esters in General</th>
<th>Esters from Cat 2 and 3 AA</th>
<th>Fatty Acid Alcohols</th>
<th>Higher Alcohols</th>
<th>Diacetyl</th>
<th>H2S and SO2</th>
<th>DMS</th>
<th>Acetaldehyde</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Temp.</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
</tr>
<tr>
<td>Inc. Oxygen</td>
<td>Inc</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
</tr>
<tr>
<td>Inc. Wort FA</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
</tr>
<tr>
<td>High FAN</td>
<td>Dec</td>
<td>Dec</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
</tr>
<tr>
<td>Low FAN</td>
<td>Dec</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
</tr>
<tr>
<td>Higher Gravity</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
</tr>
<tr>
<td>Inc. Trub</td>
<td>Inc</td>
<td>Dec</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
</tr>
<tr>
<td>Inc. Pitch Rate</td>
<td>Dec</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
</tr>
<tr>
<td>Inc. Stress</td>
<td>Dec</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
</tr>
<tr>
<td>Early Yeast Sep.</td>
<td>Dec</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>Dec</td>
<td>Inc</td>
<td>Inc</td>
</tr>
</tbody>
</table>
Thank you

What questions do you have?