

Fermentation and Flavor A perspective on sources and influence

Mark Sammartino MBAA Technical Director

Content of Discussion

- Four Aspects of Flavor
- Basis of Flavor in Fermenting
 - Organic Acids
 - Fatty Acids
 - Nitrogen Metabolism
 - Esters
 - Carbonyls
 - Sulfur Compounds
- Summary

Flavor

- Four Categories of Impact
 - Taste
 - Four distinctive tastes:
 - Sweet Sour, Salt, and Bitter
 - Aroma
 - Sensation
 - Emotion

Basis of Flavor Compounds

- Outside of Fermenting
 - Water Treatments (salty), hop compounds(bitter), other additives; spices, fruit, priming sugars (sweet) etc.
- Inside Fermenting
 - Yeast Growth
 - Carbohydrate metabolism for energy
 - Nitrogen metabolism for amino acids and other ammonia compounds
 - Lipid metabolism for cell wall structure
 - Other minor compounds

Aroma

- Complex distillation of the many individual molecules
- Primary Molecules of this discussion
 - Alcohols:
 - Ethanol derived via anaerobic carbohydrate metabolism
 - Other alcohols derived from catabolic and anabolic production of amino acids
 - Esters:
 - Produced via catalysis of equivalent alcohols being utilized as a receptor for excess acetyl CoA

Aroma con't

- Primary molecules con't
 - Vicinal Diketones:
 - Formed within the anabolic processes to make specific amino acids: Valine and Isoleucine
 - Acetaldehyde:
 - Formed as the immediate precursor to ethanol
 - Short Chain Fatty Acids:
 - Formed as intermediates in the synthesis of lipid membrane components
 - Sulfur Compounds:
 - DMS originates from S-methylmethionine (SMM) produced during germination of barley
 - H2S and SO2 formed in the breakdown of sulfur amino acids and the reduction of inorganic sources like sulfate and sulfite for AA anabolic processes

Metabolic Pathways

COOH соон COOH н соон HO-COOH -Н н formic.acid соон H—Ċ—H oxalic.acid COOH malonic.acid CH 3 COOH malic.acid acetic.acid соон COOH H-COOH H—Ċ—н COOH -H H—ċ—н COOH н— \cap Н· COOH —Н maleic.acid С Н-—Н ·Csuccinic.acid COOH COOH glutaric.acid fumaric.acid

ORGANIC ACIDS

Organic Acid Pathways

Organic Acids

- Sour taste: attributed to Organic Acids
 - Lower the pH: H+ ion causes the sour character
 - Sourness not linear to pH, more associated to acid concentration and titratable acidity (associated and disassociated H+ ions considered)
 - Relative Sourness:
 - Citric>Malic>Succinic>Lactic>Acetic
 - Can add bitterness, saltiness and astringency as well (Succinate)

Organic Acids

• Majority formed a repressed tricarboxylic acid cycle

O R-C OH

- Excretion into beer explains
 - Lack of mechanism of further oxidation,
 - A need to maintain a neutral intracellular pH
 - Not needed for further anabolic reactions.
- Increased temps and yeast growth promote formation.
 - Increased inefficiency of metabolism and cells focus on growth activated the suppressed TCA cycle

LIPIDS (FATTY ACID) METABOLISM

Fatty Acid Pathways

Lipid (Fatty Acid) Metabolism

- Wort fatty acids and sterols
 - are absorbed by yeast immediately
- Yeast must synthesize sterols and unsaturated fatty acids in the initial stages of fermentation when oxygen is available (oxygen limited process)
- Growth of yeast in anaerobic phase dilutes preformed and absorbed pool between mother and progeny cells
- Cells divide until FA and sterol depletion limits growth

Lipid (Fatty Acid) Metabolism

- 90% of wort fatty acids are accounted for by Palmitic (16:0), Linoleic (18:2), Stearic (18:0), and Oleic (18:1)
- In beers 75-80% of fatty acids are Caprylic (8:0), Caproic (6:0), and Capric (10:0)
- Concentration from wort to beer increases 13-65%.
- Assumed that long chain fatty acids are assimilated into structural lipids and shorter chain fatty acids are releases as by products

Lipid Metabolism con't

- Increased yeast growth promotes the formation of fatty acids in beer
 - Higher temps. Increased wort oxygenation, and possibly increased pitching rates increase levels
- Short chain FFA's (C8-C14) are toxic to yeast
 - Due to non-specific detergent like disruption of cell membranes, therefore not excreted into beer
 - These are esterified to become part of the ester pool (discussed later)
- Elevated levels are associated with old cheese, waxy, goat like and fatty flavors.

NITROGEN METABOLISM

Nitrogen Metabolism

- Nitrogen compounds in wort
 - do not effect the rate of yeast growth
 - but effect extent of yeast growth at a specific rate.
- Amino acid metabolism has important role in the formation of flavor compounds

– specifically higher alcohols and esters.

• Nitrogen Metabolism is both Catabolic and Anabolic

Nitrogen Metabolism con't

- Catabolic (50%):
 - Yeast uptake amino acids, deaminate to alpha keto acids and used as skeletons to make amino acids
- Anabolic (50%):
 - Thru pyruvate and with the formation of specific amino acids or directly to alpha keto acids
- Once the alpha keto acid is available it is transaminated to the specific amino acid

Amino Acid Uptake Impact on Flavor

- Amino Acids are assimilated in groups:
 - Group A is taken up quickly
 - Arginine, Asparagine, Aspartate, Glutamate, Glutamine, Lysine, Serine, Threonine
 - Group B is taken up slowly and throughout the fermentation:
 - Histidine, Isoleucine, Leucine, Methionine, Valine, Cysteine*
 - Group C is taken up after Group A is fully utilized:
 - Alanine, Ammonia, Glycine, Phenylalanine, Tyrosine, Tryptophan
 - Group D is only taken up in aerobic conditions:
 - Proline

Sulfur related *assumed part of group B

Amino Acids to Esters and Alcohols

Amino Acid	AA Group	Keto Acid	Aldehyde	Alcohol	Ester	Aroma	Threshold	Conc. In Beer
	1		,					
Alanine	С	Pyruvic Acid	Acetaldehyde	Ethyl Alcohol	Ethyl acetate	Nail polish/solvent	30 ppm	8-70 ppm
Threonine	А	Ketobutyric Acid	Propionaldehyde	n-Propyl Alcohol	n-propyl acetate	Pears	30ppm	
				Isopropyl Alcohol	Isopropyl acetate	Tutti fruity/apple banana/sl. Solvent		
Norvaline	В		Butyraldehyde	n-Butyl Alcohol	Butyl acetate	Tropical fruit/pineapple/juicy fruit		0.05-0.4ppm
Valine	В	Ketoisovaleric Acid	Isobutyraldehyde	Isobutyl Alcohol	Isobutyl acetate	Sweet fruity/tr. Banana	1.6ppm	0.03-0.25ppm
Methionine	В	Ketomethiobutyric Acid						
Norleucine	В		Valeraldehyde	n-Amyl Alcohol	Amyl acetate	Bananas/apples/pear		
Leucine	В	Ketoisocaproic Acid	Isovaleraldehyde	Isoamyl Alcohol	Isoamyl acetate	Banana candies/circus peanuts	1.6 ppm	0.4-6ppm
Isoleucine	В	Ketomethylvaleric Acid		Amyl Alcohol	Amyl acetate	Banana pear/Banana apple		
			Hexanal	n-Hexyl Alcohol	Ethyl Hexanoate	Red apple/anise	0.23ppm	0.1-1.5ppm
			Heptanal	n-Heptyl Alcohol	Ethyl Hepanoate	Apricot/cherry/grape/rasberry		
Aspartic Acid	А	Oxalactetic Acid	Asparagine					
Glutamic Acid	А	Ketoglutaric Acid						
Phenylalanine	С	Phenylpyruvic Acid		Phenylethyl Alcohol	2-phenyl-ethyl acetate	Rose/floral	3.8ppm	0.1-1.5ppm
Tyrosine	С	Hydroxyphenylpruvic Acid		Tyrosol	4-hydroxyphenylacetate	Rose/floral		.04ppm
Tryptophan	С		Glycoaldehyde	Tryptophol	Ethyl-3-indolacetate	Jasmine/Floral		
Serine	А	Hydoxypyruvic Acid	Glyoxal	Glycol				

Amino Acid Uptake Impact on Flavor con't

- Group B and C contain the higher intensity ester potential amino acids
 - Isoleucine Amyl acetate: Banana/Apple/Pear
 - Leucine isoamyl acetate: Circus Peanuts
 - Valine Sweet Fruity Isobutyl acetate: Sweet Fruity
 - Phenylalanine Phenylethyl acetate: Rose/Floral
 - Tryptophan Ethyl-3-indolacetate: Jamine/Floral
 - Tyrosine 4-Hydroxyphenylacetate: Rose/Floral
- Catabolic processes w/ Methionine and Cysteine
 can provide a source for production of H2S and SO2

Nitrogen Metabolism Impact on Flavor

- Levels of FAN can:
 - Impact the potential esters formed
 - High FAN reduces need for Category 2 and 3 AA in Catabolic Processes
 - Impact the level of sulfur compounds
 - Low FAN and/or high levels of Methionine and Cysteine can increase sulfur compounds from catabolic processes
 - Impact Diacetyl production (discussed later)
- Awareness around levels for control

HIGHER ALCOHOLS

Higher Alcohols

Higher Alcohols

- Higher Alcohols:
 - Derived from two different metabolic pathways
 - Nitrogen metabolism
 - excess of keto acids, are decarboxylated to create their specific alcohol
 - Lipid metabolism
 - released if there is excess or fatty acid biosynthesis ceases and there is a need to reclaim CoA
 - C8-C14 organic acids are toxic to yeast and may be transformed to esters to make them non-toxic before release.
 - C2-C6 organic acids are reduced and released in the same manner, to maintain the balance between acetyl CoA and CoASH

Flavor Impact of Higher Alcohols

- Can be broken into three categories
 - Fatty acid alcohols
 - Aliphatic alcohol
 - Aromatic alcohols
- Consider unpleasent for the most part
 - Fatty Acid: Waxy, alcohol, solvent
 - Hexanol, Octanol, Decanol, etc.
 - Aliphatic: Solvent, harsh, hot
 - Propanol, Amyl alcohol, Isoamyl alcohol, Butanol, etc.
 - Aromatic: Mixed, some pleasant like phenylethyl alcohol- floral/rose
 - Tyrosol, Tryptophol, etc.

Higher Alcohol Process Control

- Higher Alcohol Control:
 - Markedly impacted thru the temperature of fermentation: Higher Temp= more formed
 - Excessive aeration or oxygenation promote yeast growth and therefore promote higher alcohol formation
 Ehrlich Pathway

ESTERS

Ester Formation

Esters

- Esters:
 - Are formed via two metabolic pathways similar to higher alcohols.
 - Thru amino acid synthesis following fusel alcohol formation, w/ esterification via excess acetyl CoA
 - Thru esterification of fatty acids as a means of detoxification or to maintain acetyl CoA balance.
 - Are produced from their equivalent alcohol
 - Formed under conditions when Acetyl CoA is not required as the prime building block of key cell components
 - Specifically: when the synthesis of lipids and amino acid metabolism is shut down or depressed

Ester con't

- Control of Ester Levels:
 - Increase temp: increase in ester formation
 - Increases frequency of unbalanced Acetyl CoA pool
 - Lower aeration: higher ester formation
 - Lower O2 means lower sterol and fatty acid biosynthesis, hence more Acetyl CoA
 - Any restriction in cell growth will elevate esters
 - Low FAN: decrease esters
 - Acetyl CoA is tied to nitrogen metabolism
 - Trub rich wort: lower esters
 - Higher fatty acid content, more cell production
 - Higher levels produced in high gravity worts
 - Possibly an impact on the enzyme acetyl alcohol transferase

CARBONYLS; ACETALDEHYDE AND VDK'S

Carbonyls

- Nearly 200 carbonyl compounds have been detected in beer
- Of importance are Acetaldehyde, and VDK's
- Aldehydes
 - Have flavor thresholds are significantly higher than corresponding alcohols
 - Almost all are described with unpleasent flavor descriptors: grassy, green leaves, cardboard.
 - Some are formed during mashing and boiling, other arise from the same pathways discussed with higher alcohol formation

Acetaldehyde

- Needs to be considered separately to other longer chain aldehydes
 - Because of its importance as an intermediate in the formation of alcohol and CO2
- Has a flavor threshold of 10-20 ppm
- Possesses an unpleasent grassy, green apple to pumpkin flavor
- Formation occurs in mid fermentation during active yeast growth
- Accumulation is tied to the kinetic properties of the enzymes associated to it's formation and dissimilation

Acetaldehyde

- High levels in finished beer are associated with non-standard performance
- Poor yeast quality or early separation from yeast are the main issues
- High temperature fermentations, over oxygenation, and high pitching rates have also been tied to elevated levels.
- May also be associated with yeast stress by toxicity
 - Formation of Schiff bases w/ amino residues leading to deactivation of enzyme pathways associated w/synthesis of proteins and nucleotides.

Vicinal Diketones

- Diacetyl (2,3-butanedione) and 2,3-pentanedione are the most important
- Both possess a flavor of butter/butterscotch
 - Diacetyl threshold approx. 0.15 ppm
 - 2,3-pentanedione threshold approx. 0.9 ppm
 - Contributes to overall palate in low levels and can be considered undesirable at elevated levels
- Formed as an indirect result of biosynthesis of valine and isoleucine
 - During early to mid fermentation alpha acetohydroxy acids are excreted from the cell
 - These undergo spontaneous decarboxylation forming diacetyl and 2,3-pentanedione
 - Late stages of fermentation these are picked up by the cell and reduced to acetoin and 2,3-butanediol, both much less flavor active

Vicinal Diketones con't

- Elevated levels of "D" are associated with:
 - Rapid and extensive growth rates
 - High levels of FAN (Utilization of AA available)
 - High oxygenation
 - High temperature fermentations
 - High trub levels
 - Elevated pitching rates

- Incomplete reduction late in fermentation
 - Stressed yeast
 - Early yeast separation

SULFUR COMPOUNDS

Sulfur Compounds

- There are many sulfur compounds related to beer, three principle compounds are critical:
 - DMS from DMSO
 - Hydrogen Sulfide (H2S)
 - Sulfur Dioxide
- Present in wort roughly 100 ppm sulfur:
 - Approx. 50 ppm organic sulfur
 - From amino acids (methionine, cysteine), vitamins (biotin, thiamine), and sulfur containing proteins and fragments
 - Approx. 50 ppm sulfur as sulfate ion from grain

Sulfur Metabolism

- Yeast needs sulfur for certain coenzymes, vitamins and amino acids
 - 0.2-0.9% cell dry weight
- Sulfur source preferred by yeast is from breaking down methionine
 - And other organic sources
- Second major source is from conversion of wort sulfates to sulfites to sulfides
 - Little is used in the presence of sulfur containing amino acids

Hydrogen Sulfide and Sulfur Dioxide

- H2S and SO2 arises in the beer from the breakdown of organic sources and sulfate conversion
 - Sulfate to sulfite: SO2
 - Sulfite to sulfide: H2S

- Sulfide incorporated into Amino Acid Metabolism
- Max rate of production occurs with max growth rate
- Factors that utilize sulfur compounds within fermentations will help reduce
 - Presence of wort lipids, increased oxygenation, increased temperatures.
- Factors that hinder fermentation also increase levels of retained sulfur compounds
 - Vigorous fermentations are needed to purge with CO2
 - Poor yeast health, lack of vitamins and cofactors (zinc) and fermentor top pressure will exacerbate.

Dimethylsulfide (DMS)

- DMS comes from two sources:
 - From S-methylmethionine (SMM) which decomposes to DMS upon heating (outside this discussion)
 - Reduction of dimethy sulphoxide (DMSO) by yeast in fermentation
- DMSO comes from the malt and is a factor of kilning practices
 - It is heat stable and survives the hot wort phases
- Conversion by yeast to DMS occurs primarily when amino sources of sulfur have been depleted
- Other factors also seem to have an impact on the conversion
 - Cooler fermentation temperatures, high gravity worts, high pH and deep fermentation vessels

Flavor Summary

- Organic Acids:
 - General- Sour, tart
 - Succinate: Salty, Bitter
- Fatty Acids:
 - C6-C10: Waxy, Old, Fatty
- Esters: Various Fruit and Floral
- Higher Alcohols:
 - Fatty Acid Alcohols: Waxy, Alcohol, Solvent
 - Aliphatic: Solvent, Banana
 - Aroma: Floral (rose)
- Aldehydes (acetaldehyde): Grassy, Green Leaves and Apples, Pumpkin
- Diacetyl: Butter, Butterscotch
- SO2: Skunky
- H2S: Burnt Match
- DMS: Cream Corn

Influence Summary

Thank you

What questions do you have?