

Traditional and Alternative Fermentation Techniques

Travis Audet

Anheuser-Busch

October 8, 2015

The Absolutes of Fermentation

• 1)

The Absolutes of Fermentation

• 1) There are no absolutes in fermentation

The Absolutes of Fermentation

- 1) There are no absolutes in fermentation
- 2) See rule number #1

The Non-Absolutes of Fermentation

- Why no absolutes?
 - Difference between ale, lager and other yeasts
 - Differences between yeasts in in the same family
 - Not all lager behave the same and not all ales etc.
 - Absolutes don't indicate degree of impact
 - Other variables are not the same as the one reference
 - Estery yeast or low ester yeast?
 - Fermenting standard gravity or ferment high gravity?
 - Low attenuation or highly attenuated beer?
 - Standard fermentation rate or rapid?
 - Yeast flocculation characteristics of particular yeast?
 - The inherent genetic stability of a strain?
 - Fermentation more complex than one parameter causing one result

Fermentation Good Practices - Temperature

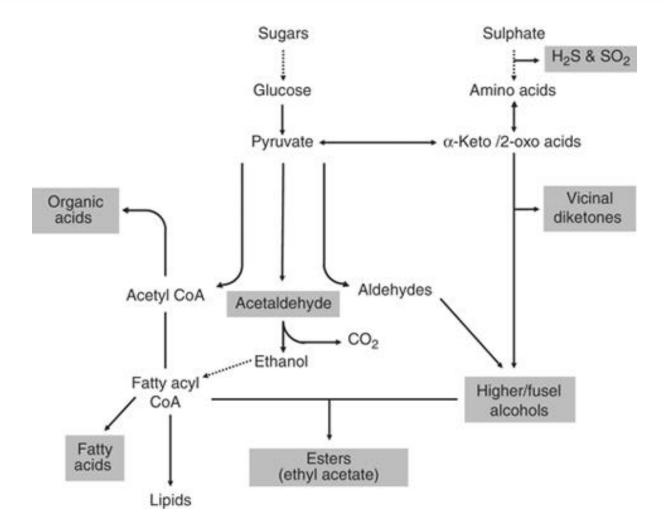
- fermentor full temperature should be a degree below fermentation temperature
- This prevents cooling coming on before fermentation is vigorous
 - Early cooling creates localized temperature gradients before fermentation is robust
 - Early cooling can shock yeast
 - Early cooling can prolong fermentation

Fermentation Good Practices – Fill Time

- Long fermentor fill times should be avoided
 - Track and control hours from yeast/oxygen addition to fermentor fill as a critical control parameter
 - Depending on aeration/oxygenation rates and fill frequencies yeast can move in and out of anaerobic condition
 - Yeast growth can be excessive
 - Stratification of tank can become an issue
- If long fill times cannot be avoided then:
 - Aerate instead of oxygenation to aid in mixing
 - Don't add yeast on early brews
 - Always aerate the final brew

fermentor Fills

- Fill number maximum typical 4 brews single brew lane or 8 brews for double brew lanes
 - Single brew lane fills every 2hrs Total time 4 brews = 8hrs
 - Double brew lanes fill every 1hrs Total time 8 brews = 8hrs


Fermentation Good Practices

- Avoid growing too much yeast
- Typical peak cell count is 80 100 million cells/ml depending on original gravity
 - Greater peak cell counts can lead to loss of beer yield
 - Greater peak cell counts can lead to autolysing yeast if not removed mechanically
 - Greater peak cell counts can lead to greater peak diacetyl
 - Use of FAN beyond valine produces more diacetyl
 - Greater peak cell counts can lead to poor yeast health in beers
 brewed with higher proportions of adjuncts

Fermentation Good Practices

- Avoid high hydrostatic pressures
 - Some yeast sensitive to CO_2 in solution
 - Large tank ratios 2:1 Height to Diameter max
 - Greater the pressure then lower the ester formation
- Avoid temperature shocking yeast
 - Gentle cooling preferably with proportional control valves
 - 1 degree per hour cooling programs
- Final cooling of fermentor should be based on VDK analysis
 - Never adjust attenuation level through cooling instead
 fermentability needs to be controlled through mashing scheme

Yeast Metabolism and Flavor Active Compounds

FEMS Yeast Research

Volume 8, Issue 7, pages 1018-1036, 15 SEP 2008 DOI: 10.1111/j.1567-1364.2008.00433.x http://onlinelibrary.wiley.com/doi/10.1111/j.1567-1364.2008.00433.x/full#f3

General Fermentation Schemes

Perhaps the first photograph of men drinking beer, circa 1844 in Scotland, by Hill & Adamson

General Fermentation Schemes – 2 Vessel

- Traditional approach is 2 vessel fermentation
- Ferment 80 90% of extract and then transfer to a second vessel
- Advantages:
 - re-suspend yeast for finishing beer more quickly
 - blending opportunities
 - greater throughput for initial vessel
 - Maximize tank capacity of second vessel
- Disadvantages:
 - Additional transfer and losses, additional utilities to support secondary tanks

General Fermentation Schemes – 2 Vessel with Krausening

- Similar to the two vessel system but with fresh wort added
- What is krausening?
 - Add fresh wort at a rate of 10-20% and typically fresh yeast and air/oxygen when 80% of fermentation is complete
 - Fresh wort, yeast and air/oxygen is added at time of transfer of primary fermentor
- Why krausen?
 - Fresh wort and yeast re-invigorates fermentation to help drive completion of the fermentation and VDK reduction in a shorter amount of time
 - Good for yeasts that tend to settle out

General Fermentation Schemes – 2 Vessel with Krausening

Advantages

- Faster fermentation
- Disadvantages
 - Added complexity
 - The krausen brews need to be planned for addition at the right time
 - Possibility of a wort holding tank
 - Added risk of microbiological contamination
 - Vessel utilization is lower as freeboard is needed in second vessel

General Fermentation Schemes – Conical fermentor Two Vessel System

- A conical fermentor is a vertical fermentor with a cone that allows cone collecting yeast (AKA Cylindro Conical Vessel CCV)
- It can be used as a two vessel system
- Advantages
 - Same as two vessel system already described
 - Additionally yeast harvest can be collected from cone avoiding stress of centrifuge collection
 - Yeast can be collected earlier in process so presumably healthier
 - If used as only primary fermenting vessel does not need to be pressure rated

Disadvantages

- Same as two vessel system already described
- Need flocculent yeast

General Fermentation Schemes – Conical fermentor Single Vessel System

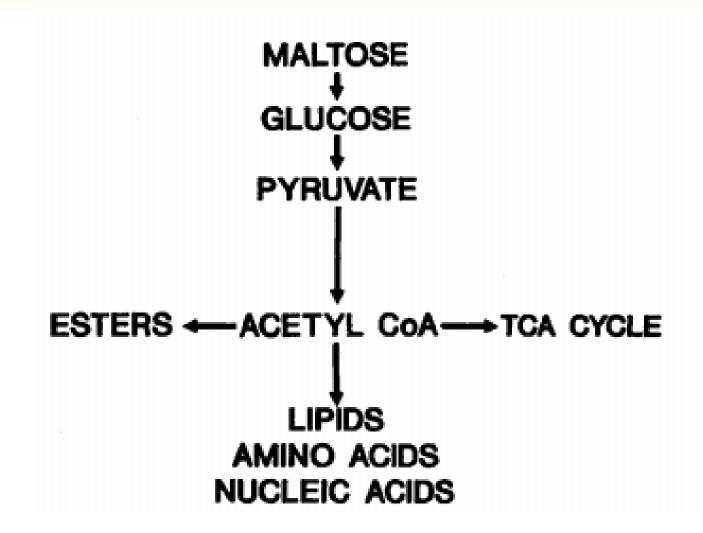
- More recent approach is to use a single vessel for fermentation and maturation (also known as Uni-Tank)
- Ferment all extract, reduce VDK's, settle/collect yeast and age beer all in one tank
 - Advantages
 - Less tank movements and loses
 - Less CIP's
 - Lower contamination risk
 - Multiple yeast removals lowering downstream loading
 - Disadvantages
 - Lower capacity utilization
 - Limited to flocculent yeast varieties
 - Vessels are more expensive (need pressure rated vessels)
 - Lower downstream blending opurtunities

Lager Fermentation

Traditional Lager Fermentation

- Cool in at 6-7C (43-45F) and free rise to 9C (48F)
 - Hold until entire fermentation is complete
 - Primary 6-8 days but secondary can be an additional 14 days or longer
- Advantages
 - Reduced higher alcohol production
 - Reduced ester production
 - Reduced protease activity so better head retention in final beer
- Disadvantages
 - Slow

"Warmer" Lager Fermentations


- Cool in at 9C (48F) and free rise to 11C (52F)
 - Hold until entire fermentation is complete
 - Primary 6-8 days but secondary can be an additional 10 days or longer
- Advantages
 - Lower higher alcohol production
 - Lower ester production
 - Lower protease activity so better head retention in final beer
 - Slightly faster
- Disadvantages

"Warmer" Lager Fermentations

- Cool in at 9C (48F) and free rise to 11C (52F)
 - Hold until entire fermentation is complete
 - Primary 6-8 days but secondary can be an additional 10 days or longer
- Advantages
 - Lower higher alcohol production
 - Lower ester production
 - Lower protease activity so better head retention in final beer
 - Slightly faster
- Disadvantages
 - Still slow

- Push lager fermentation to fastest possible rate while maintaining sensory profile and yeast health
- Esters are formed during yeast growth phase and set at peak cell count
- Concept is to allow fermentation to warm after peak cell count
- Free rise fermentations allow for rapid reduction of diacetyl to acetoin

J. Inst. Brew., September-October, 1990, Vol. 96, pp. 327-331 ESTER FORMATION IN BREWERY FERMENTATIONS By Hilary A. B. Peddie

- Starting temperature = ?
 - Depends of ester profile, yeast and sensory match to be achieved
- Free rise initiation = end of cell growth
- Free rise temperature = ?
 - Temperature depends on yeast strain and ability to handle fermentation at higher temperatures
- Cooling on at end of fermentation
 - Typically when VDK is in specification

• Advantages

- Faster overall fermentation time
- Better vessel utilization
- Disadvantages
 - Greater foaming and need for lower percentage fills of fermentor or anti-foams to maintain fill levels
 - More stressful on yeast but yeast dependent
 - Protease enzyme is more active at warmer temperatures and can reduce foam stability in the final beer.

Ale Fermentation

Ale Fermentations

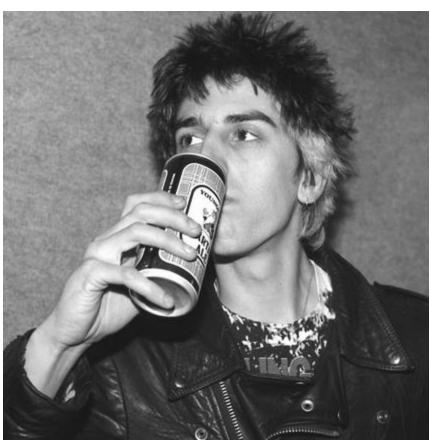
- Typical ale fermentations 1million cells/ml per degree plato
- Oxygen requirement tends to be lower than lagers
- ~0.75ppm oxygen per degree plato
 - i.e standard 12 plato is 9ppm
 - i.e. high gravity wort at 17.5 plato 13ppm
- Typical ale starts warmer than lager and free rises to a warmer temperature
 - Typical starting is 18 19C (64 66)
 - Typical free rise is 20C (68 F)

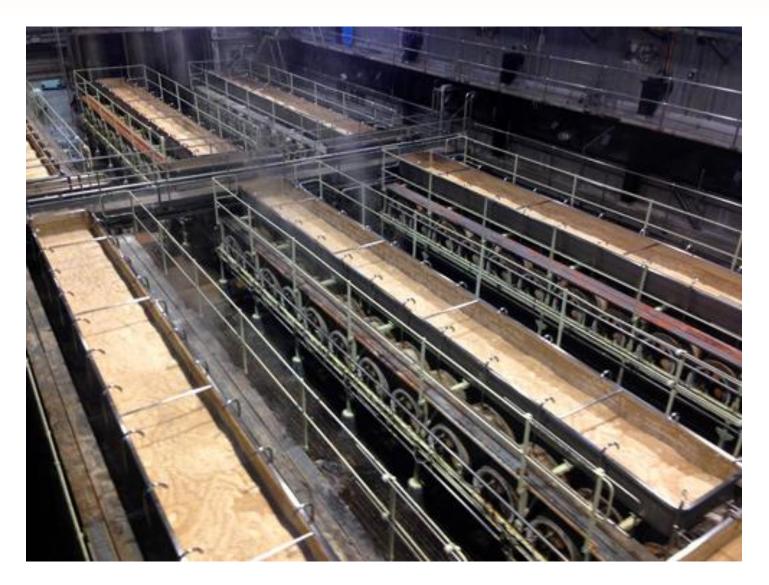
Ale Fermentations

- Ales tend to be flocculent ۲
- Keeping yeast in suspension can be a challenge with some yeasts ullet
 - Lower yeast in suspension at the end of fermentation the slower the diacetyl reduction is
- **Opportunity for a two vessel system to help rouse the yeast**
- For open vessel fermentations rousing goosenecks can be used to ٠ help re-suspend yeast
- Some ales are top cropping others are bottom cropping ٠
 - Bottom cropping can be collected the same as lager
 - Top cropping yeasts need to be collected from the top of the vessel either with scoops or funnel device

Ale Fermentations

Yorkshire Squares


• Two floored vessel to aid in top cropping yeast



So Bring on the Alternative!

Burton Union System

Continuous Fermentation

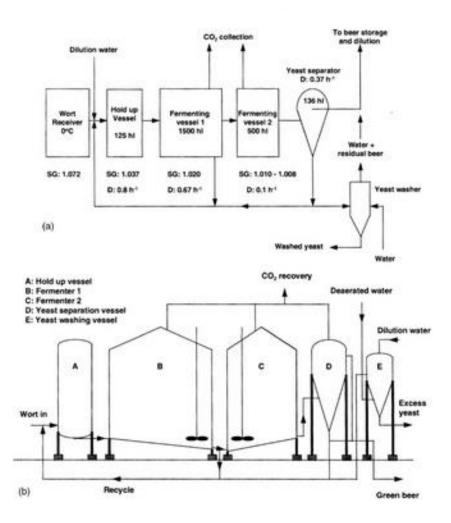


Fig. 5.35 Coutts system of continuous fermentation. (a) Diagrammatic. (b) Schematic of Auckland Brewery continuous plant (from Dunbar et al., 1988).

Alternative Aeration Timing

- Testing of VHG 22 Plato worts found it is better to oxygenate 12hrs after pitching wort with yeast rather than at time of filling
 - 33% reduction in fermentation time with good VDK & ester results
- Oxygen levels reached = 25ppm through fermentor oxygenation
 - Inline only capable of 9ppm

J. Inst. Brew. 113(2), 168–184, 2007 The Combined Effects of Oxygen Supply Strategy, Inoculum Size and Temperature Profile on Very-High-Gravity Beer Fermentation by Saccharomyces cerevisiae By Heather Jones

Fermentation Good Practices-<u>Alternative</u> Aeration Timing

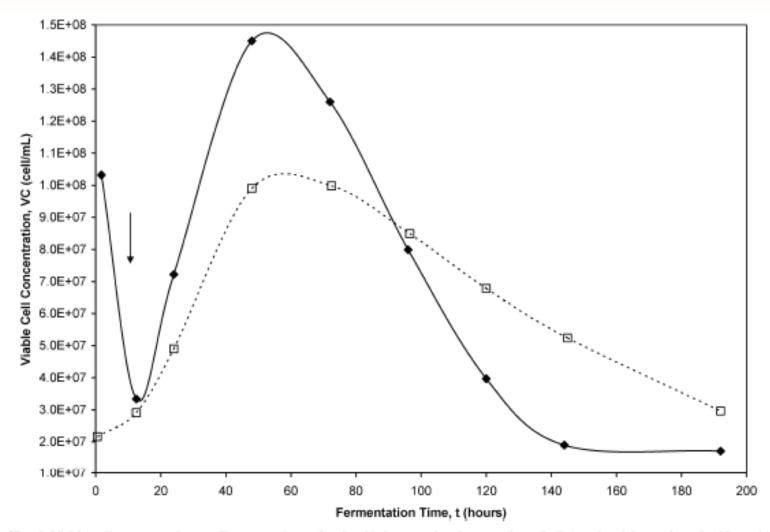


Fig. 6. Viable cell concentration profile comparisons for the third successive fermentation of pilot-scale trials conducted with strain LCC 2034 in 22°P wort. \Box = Control process parameters (inoculation rate = 2.2×10^7 cell/mL; oxygen delivery strategy = 22 ppm DO prior to inoculation; temperature profile = 14.5°C then increased to 20°C at 48 h post-inoculation; temperature profile = 14.5°C then increased to 20°C at 48 h post-inoculation; temperature profile = 14.5°C then increased to 21°C at 35 h post-inoculation). Arrow denotes dilution of fermenting wort with oxygenated wort at 12 h post-inoculation.

Closing

• Thanks to:

- All brewers that contribute and share knowledge of the art and science of brewing
- MBAA
- Anheuser-Busch for their support in presenting today

Thank You

