Master Brewers Association of the Americas Dedicated to the technology of brewing.

Barrel Dwellers: Microbiology of Barrel Aged Beers

Karl Ockert

MBAA Technical Director

kockert@mbaa.com

"The only way to sanitize a wooden barrel is with gasoline and a match"

Dr. MJ Lewis, 1982 UC Davis brewing lecture

Charring vs Toasting

Whiskey barrels

Wine barrels

Why Barrels Harbor Microbes

- Rough surfaces easy to attach to and are protective
- Porous nature gives additional shelter and nutrient source (wood sugars & product)
- Very difficult to clean, sanitize and inspect
- How many of you have taken a barrel apart?

We cannot control barrel microbiology but we can manage it to try to control its growth

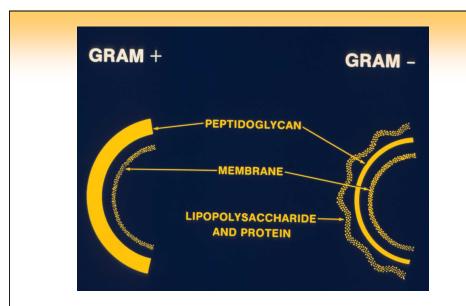
Key Microbes in Barrels

- Bacteria
 - Acetobacter, aerobe
 - Pediococcus, aerotolerant anaerobe
 - Lactobacillus, aerotolerant anaerobe
- Yeast
 - Brettanomyces/Dekkera

Oxygen and Microbes

- *Aerobes* can only grow in presence of oxygen, will not grow anaerobically
- Aerotolerant will not grow in presence of oxygen but can tolerate oxygen
- *Obligate anaerobes* cannot grow with oxygen, it is toxic to them
- Facultative can grow aerobically or anaerobically

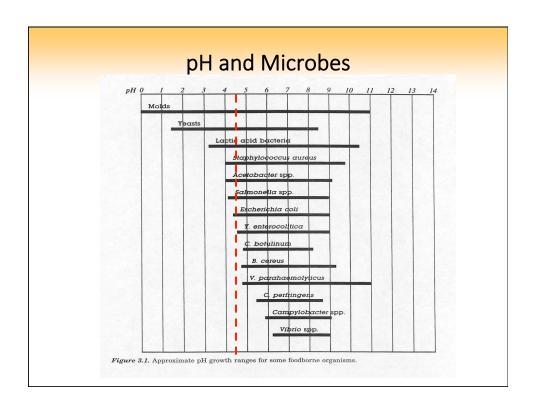
Catalase Test for Aerobes


$$2 \text{ H}_2\text{O}_2 \longrightarrow 2 \text{ H}_2\text{O} + \text{O}_2 \text{ (fizz)}$$
Catalase

- Add one drop of Hydrogen Peroxide (H₂O₂) to colony
- Catalase produced by aerobes will fizz
- Anaerobes do not produce Catalase, no fizz

Gram Stain Reaction

Bacteria can be sub-classified by reaction to the Gram Stain:


Gram Positive = Violet/Purple Colored
Gram Negative = Red/Pink Colored

The Lipopolysaccharide/protein membrane that resists the stain also makes Gram Neg bacteria resistant to hop alpha acids

Quick Easy Test

- Slurry the colony onto a slide and add a drop of Potassium Hydroxide (KOH)
- Gram Negative bacteria will form a gooey mass
- Gram Positive will not be gooey

Factors Affecting Pathogens in Beer

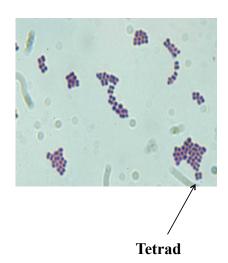
- Oxygen (beer is anaerobic)
- pH (<4.6 in beer)
- Temperature (low temperature)
- Nutrients (carbohydrate/nitrogen depleted)
- Selectors:
 - -CO₂
 - Ethanol (>2.5% ABV)
 - Hop Acids (>20 BU's)

Spoilage or Innovation?

Quality = Flavors and Characters present in the beer that the brewer intended to be there

- Acidity, Diacteyl, Phenloic, Fusel Alcohols, Esters, etc
- Considered spoilage in some styles and brands but desirable in others
- New flavor boundaries are being explored

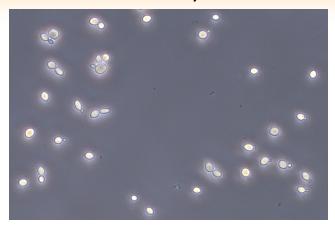
Acetobacter


- Gram Neg, Short rods, Aerobe
- Oxidizes ethanol to acetic acid (vinegar)
- Aerobic growth seen as a surface film or around bung area
- Will produce acetaldehyde in low oxygen atmosphere

Lactobacillus

- Gram Pos. Rods in pairs or chains, aerotolerant anaerobe
- Produces lactic & acetic acids from sugars
- Some produce diacetyl and phenols
- Prefers pH >3.5

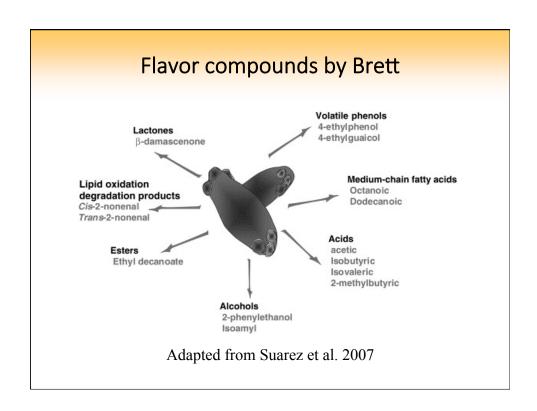
Pediococcus


- Gram Pos. Round cocci in tetrads or clumps of cells, aerotolerant anaerobe
- Prefers pH >3.5
- Produces lactic acid from sugars and also diacetyl
- May also produce "ropiness", and slimy growth

Brettanomyces

- "British brewing fungus"
- *Dekkera* is the sporulating form
- Common species are:
 - B. anomalous
 - B. bruxellensis
 - B. lambicus
 - B. claussenii

Brettanomyces



Can appear ovoid similar to S. cerevisae or elongated, depends on growth media and conditions.

Brettanomyces

- Can grow fast (weeks) in favorable conditions or slowly (years) in less favorable.
- Out-competed by *Saccharomyces* in beer fermentations because of low growth rate so usually seen post-primary fermentation, "waits"
- Very little oxygen required to stimulate growth
- Can form a surface film or "pellicle"
- Uses a range of carbon sources: sugars or ethanol, can survive in barrels utilizing wood sugars – cellobiose
- Can also super attenuate by utilizing dextrins via

 Glucosidase activity

Brett Flavors

'Positive' Brett aromas:

- Rancid: fatty acids (isovaleric acid)
- Clove, smoked, medicinal: volatile phenols
- Sweat, wet leather, goat-like, wet dog:
 caprylic, caproic and capric acid

'Negative' Brett aromas:

- Mousy (mouse or rabbit urine):
- 2-acetyl-1-pyrroline, ethyltetrahydropyridine, produced in early fermentation

Brettanomyces

- Most commonly found in used barrels
 - Found up to 8 mm deep in staves, can survive on the cellobiose, "wood sugar"
 - -Almost impossible to remove
- Brett not usually found in brand new barrels
 - Toasting/charring processes an effective sterilizer but barrels can quickly become infected with Brett once filled
 - Newer barrels have higher cellobiose, make a good habitat for Brett to hide in

Barrel Cleaning

- Manage populations and control growth
 - Rinse with warm water after using
 - Clean with weak alkaline agents like ProxyClean
 - Use of Steam or hot water (180F for 20 minutes) are effective to knock down populations and have good penetration
 - Ozone is very effective, no residuals but poor penetration. Barrels must be very clean to work.

Barrel Maintenance

- Good practices:
 - Use continuously, keeping the barrels full
 - Avoid letting them dry out completely for a long period!
 - Top off or use of inert gas to avoid air space
 - Keep bung area clean
 - Empty barrel storage wet (citric acid/SO₂ solution) or dry (gaseous SO₂ sulfur wicks)
 - Track barrel uses, cycle number, issues with each barrel
 - Isolate and label infected barrels

Avoid Cross Contamination

- Isolate barrels, hoses, fittings and clamp gaskets from non-barrel production
- Run barrel beer operations, i.e. transfers and bottling, *after* non-barrel operations.
- Always clean and sanitize hoses, pumps, lines, etc. after processing barrel beers.
- Consider using a flash pasteurizer prior to entering the bright beer tank and the filler

Thank you!

Thanks to:

James Osborne, Ph.D,
Oregon State University
Mike Barney,
Miller Brewing (retired)
Steven Pauwels,
Boulevard Brewing

MBAA – ASBC Brewing Summit

- June 5-7th 2014
- Chicago at the Palmer House Hilton
- Papers, Workshops and Exhibits
- www.mbaa.com