Development of Novel Hop Varieties

Jason Perrault
Select Botanicals Group, LLC
Member of Hop Breeding Company, LLC
Development of Novel Hop Varieties

- Basic hop info
 - Botanical
 - Crop development
- Impact of hop variety.
- Variety development
 - Why?
 - How?
 - Results
Humulus spp. Overview

- Family: Cannabaceae
 - Cannabis
 - C. sativa
 - Humulus
 - H. japonicus
 - H. yunnanensis
 - H. lupulus

(Neve 1991)
Hop Basics

- Dioecious (male and female plants).
 - Genetically complex.
 - Male-no commercial value
 - Female-Produces the valued strobiles, “cones”
- Annual above ground.
- Perennial below.
 - Allows for clonal propagation.
- Climbing bine requiring a support system.
- Photoperiod sensitive
Dioecious Plants

- Separate male and female plants
- Commercial value derived from the strobiles or “cones” of the female plant
- Male plants utilized only for hybridization
- Pollination results in:
 - Unwanted seeds
 - Increased cone size
The “Cones”

- These are the manufacturing unit of the commercial hop plant.
 - The cones contain lupulin glands (actually modified vine hairs).
 - These glands contain the chemistry we are after:
 - Essential oils: well over 100 compounds, contribution to aroma.
 - Soft resins: beta acids, and the all important alpha acids.
 - Lupulin accounts for 20 – 50 % of cone weight.
Mature Female “Cones”

Male flowers at anthesis
Annual vs. Perennial Growth

- The above ground portion of the stem is annual.
 - Dies off at dormancy.
- The root is perennial, can survive low winter temps.
 - Requires a dormant period.
- The plant also produces rhizomes (below ground stems).
 - Buds become new spring growth.
 - Easily propagated from cuttings.
Clonal Propagation

- Propagation of hops purely vegetative
 - Root cuttings
 - Layering
 - Softwood cuttings
- Resulting plants genetically identical to parent material
Climbing Bines

- In the wild-usually found climbing on companion species.
 - In cultivation, trellis is used.
 - Typical Field Setup:
 - Trellis 18’ high
 - Plant spacing at 3.5’ x 14’ or 7’ x 7’.
 - Result is 889 plants per acre
 - Anchored twine is used to support plant growth.
- The vine wraps clockwise around string.
 - Function of phototropism and thigmotropism (Light and Touch).
- Rapid growth: The hop plant will grow a foot or more a day under ideal conditions. 18-25’ in a season.
Photoperiod Sensitive

- Hops are a short day plant.
 - Under a critical number of light hours - floral initiation.
 - Also node dependant.
 - Over the critical amount, vegetative growth.
 - In shorter day areas, flowering occurs as soon as the node requirement in met-yield not maximized.
 - In longer day areas-vegetative growth is maximized prior to shortening days of mid to late summer.

- Results in defined “Production Stages”
Developmental Physiology of the Hop Plant (or Production Stages)

- The hop plant goes through numerous stages of growth throughout the year.
 - Each stage has its own unique characteristics.
 - Therefore each stage of growth requires its own unique management scheme.
- Main Stages of Growth
 - Dormancy
 - Spring regrowth
 - Vegetative Growth
 - Reproductive Growth
 - Preparation for Dormancy
Comments on Development

- The stages of hop plant growth need to be understood to properly manage the crop.
 - Each stage is unique, thus unique management requirements.
- Yield is already being determined as early as April and May.
- To complicate things further: *Much of this is variety dependant.*
Varietal Impact

- Physiology and development are impacted by variety.
- Crop management is varietal dependant.
- There is a strong genetic x environmental interaction.
- The goal: Realize the maximum genetic potential.
- The problem: Maximum genetic potential cannot be reached in all environments.
The solution: Breeding varieties to match the environment and meet the industry needs.

- Breeding objectives based on the needs of all stakeholders.
 - Objectives meant to provide brewers with hops/hop products which enhance their brews, while being agronomically efficient.
 - Performance of a variety at every level, from the farm to the brewery, adds to the overall health of the industry and our environment.
How important is this?

- Hop Supply Chain: Each link on the supply chain affects subsequent links.
 - The efficiency of a hop has a corresponding impact on the chain.

<table>
<thead>
<tr>
<th>Breeding Program</th>
<th>Farm</th>
<th>Handler</th>
<th>Brewery</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Variety:</td>
<td>Cost/Acre</td>
<td>Cost</td>
<td>Efficiency</td>
</tr>
<tr>
<td>-Good yield</td>
<td>Yield</td>
<td>Storage</td>
<td>Quality</td>
</tr>
<tr>
<td>-Disease resistant</td>
<td></td>
<td>Pellet Recoveries</td>
<td>Flavor</td>
</tr>
<tr>
<td>-Good quality</td>
<td>COST/UNIT</td>
<td>Extract Recoveries</td>
<td>Cost</td>
</tr>
<tr>
<td>-Stores well</td>
<td></td>
<td>Shipping</td>
<td></td>
</tr>
</tbody>
</table>
Sustainable Agriculture

Economic Viability
- Pursue cost efficiency
- Add value

Environmental Stewardship
- Follow applicable environmental laws.
- Practice sound chemical and water management.
- Ensure a safe, quality product for the customers.
Hop Breeding Scheme

Year 1: Parental selection and crossing
- Based on breeding objectives

Year 2: Early selection
- Greenhouse screening
- High density field screening
- 10% selection rate

Years 3, 4, 5: Intermediate selection
- Remaining plants transplanted to 18' trellis
- 1% selection rate

Years 6, 7, 8: Advanced selection
- Expand selections to multi plant plots
- 2% selection rate

Years 9, 10, 11: Elite Trials
- Selections expanded to commercial trials
- Selection rate: ?

Year 11+: Commercialization
Population Dynamics

Year 1: Parental selection and crossing
 • Based on breeding objectives

Year 2: Early selection
 • Start 40,000
 • 10% selection rate
 • End 4000

Years 3,4,5: Intermediate selection
 • Start 4,000
 • 1% selection rate
 • End 40

Years 6,7,8: Advanced selection
 • Start 40
 • 3% selection rate
 • End 1.2

Years 9,10,11: Elite Trials
 • Overall rate: 0.005%
 • Start 2
 • Selection rate: ?

Year 11+: Commercialization
Developing Objectives

- The hop trade consists of two distinct markets:
 - Alpha/Bitter
 - Processed hops.
 - Yield measured in Kg. Alpha per acre.
 - Typically high alpha varieties, increasingly aroma.
 - Aroma
 - Minimal processing.
 - Yield measured in lb. acre.
 - Typically aroma varieties, some high alphas.

- This is an important consideration when setting objectives.
Specific Objectives

- High yielding high alpha cultivars.
 - Super
 - Varietal
- High yielding aroma cultivars.
 - Improvements on the classics
 - Specialty / dual purpose
 - Organic
- Goal is to combine the above with:
 - Pest and disease resistance.
 - Good storage stability.
 - Desirable brewing characteristics (i.e. low cohumulone, specific oil components).
Parental Selection

- Remember- Hops are dioecious.
 - Distinct male and female plants.
 - Obligate out-crossers, cannot self pollinate.
 - High level of diversity (heterozygosity).
 - Hybrid vigor (Heterosis).
 - Seed propagation not possible.
- Easily clonally propagated- traits can be “fixed” in single generation.
 - Each new variety results from a single plant.
 - Millions from one.
Crossing

Left: Collection of male flowers for isolation of pollen.
Above: Application of pollen to a bagged receptive female.
From Crosses to seedlings

Typically start with 20,000 – 50,000 genotypes in any given year.

Seedlings are screened in the greenhouse for Powdery Mildew, then planted to the field.

Typically eliminate 75 – 90% of the starting population.
Cultivar Release: Year 11

- After 8 - 10 years of evaluation, release is considered.
 - Private varieties: PVP begins.
- The work is far from over, success is dependant on:
 - Continued agronomic success.
 - Grower acceptance, usually short term.
 - Brewer acceptance, long term.
Future Trends in Hop Breeding

- Molecular research
 - Marker assisted selection
 - Gene mapping
 - Gene functionality
- Non-brewery usage
- Continuing conversion to new varieties
 - Driven by disease pressure, storage issues, basic economic pressures, and continued growth in craft brewing.
 - Increases focus on AROMA
Aromatic Variability
“We're trying to have fun with this crazy thing we've all invented together”
- Dick Cantwell