The Meura Mash Filter

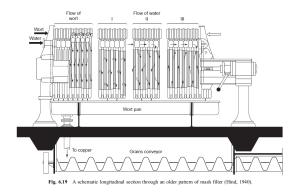
It's not German

But, it works

More popular outside the US

- Used in production of 35% of the World's Beers
- Everything from Coors Light to Heineken, Bass, Guinness, and Chimay
- Many installations in Africa

Invented in 1901


· By Phillippe Meura

- 100 year old Meura mash filter in service at Brasserie de Brunehaut, originally installed at Chimay
- The Meura 2001 Membrane Assisted mash filer was introduced in 1987

Traditional Mash Filter

Meura's Competitors

- Nortek traditional MF
- Landaluce Sparge flexible, air drying
- Ziemann Mash Filter with membranes

How does it work?

 $Q = \frac{dV}{dt} = \frac{\Delta P A}{\mu R_f}$

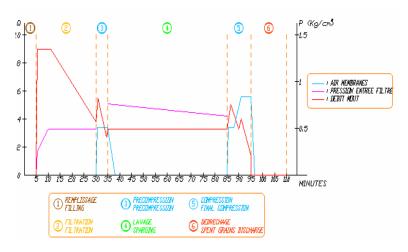
 $\begin{array}{ll} \Delta P \; (N/m^2) & : \; \text{filtration pressure} \\ A \; (m^2) & : \; \text{filtration surface} \\ \mu \; (Ns/m^2) & : \; \text{dynamic viscosity} \end{array}$

 $R_f(m^{-1})$: resistance of the filter $R_f = R_c + R_m$, where R_c :

resistance of

the cake and $R_{\mbox{\scriptsize m}}$: resistance of the filter cloth

Darcy's Law – describes liquid flow though a porous media



Meura's Specs

- · High Productivity
- (at least 14 brews per day)
- High Extract Yield
- (min. equal to laboratory yield)
- Very Bright Wort
- < 5 EBC Haze before boiling (Imhoff < 5 ml/l post boil)
- Low Oxidation
- (Completely enclosed environment)
- · Very Dry Spent Grains
- Maximum Moisture Content <70%

Typical Performance

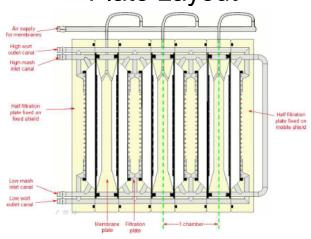
Mash Volume Flexibility

Type	Weight Proportion	Malt equivalent
1000 kg husked malt	30%	1000 kg malt equivalent
1000 kg husked barley	30%	1000 kg malt equivalent
1000 kg dehusked barley	30%	350 kg malt equivalent
1000 kg sorghum	30%	900 kg malt equivalent
1000 kg rice	25%	350 kg malt equivalent
1000 kg maize	30%	500 kg malt equivalent
1000 kg starch	20%	150 kg malt equivalent

From 80% to 125% rated capacity

Hammer Time

Grind it up



Mashing

- Finely Ground Grist Allows for Quicker Conversion Times
- Thicker Mash Allows for Higher Gravity First Worts =/> 24P

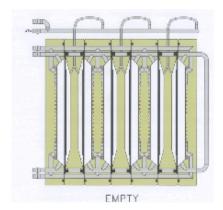
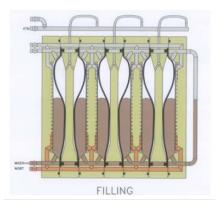
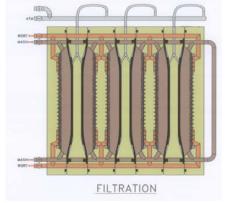


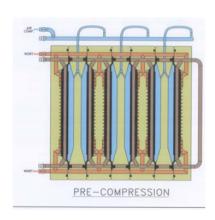
Plate Layout


Mash Filter is Empty

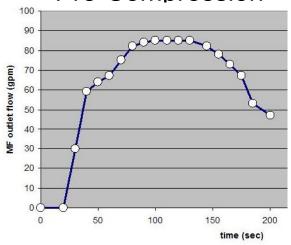
- Filter empty in closed position
- · Calls for mash


Mash Filter Filling

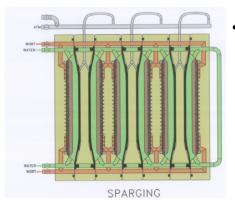
- Filled from below at a flowrate to fill the 29 chambers in 6 minutes
- First Worts begin to drain to kettle immediately (!)


Mash Filtration

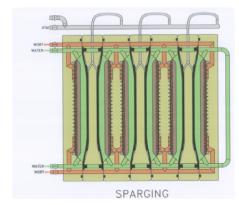
- Filter is full and back pressure builds
- Mash Tun pump begins to throttle to maintain a constant pressure
- Mash is transferred over a period of 25 minutes


Pre-Compression

- Mash Transfer is complete
- Air Bladder inflates and compresses the mash bed ~5 mins
- All First Worts are collected in 30 minutes (!)



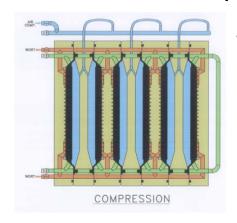
Pre-Compression



1st Sparging Cycle

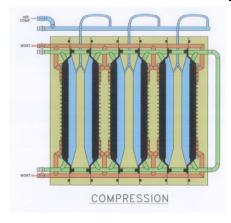
Sparge Water is added by the Mash Pump at a constant pressure while air is released from the bladder – 5 mins

2nd Sparging Cycle



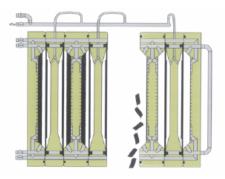
- Filter is full
- Sparge water is added
- Controlled by flowrate or pressure

F S 417


1st Compression

 Air pressure is added at 0.5 bar to the elastic membranes for 5mins

F) \$ 47


2nd Compression

- Longer than the first compression at up to 1 bar and from 5 to 15 minutes
- Spent Grains at 30% solids
- Current Lauter Tun Avg – 18%

Spent Grain Discharge

- Filter Drain < 30 gals
- · Automated machine moves the frames
- · Cake drops free from the frames
- Empties in less than 10 minutes

- Brewer rinses plates
- Soak Cleaning once a week with 2% Caustic
- Mild Caustic followed by mild acid for neutralization.

Pre - Warming

• If the filter sets idle too long, the filter must be pre-heated

		Meura 2001	Lauter Tun	
Polyphenols	ppm	161	145	
Amino Acids	ppm	1995	2074	
ß Glucans	ppm	181	171	
Total Nitrogen	ppm	700	695	
Dextrins	ppm	425	291	
Fatty Acids	ppm	18.5	166	
Table 4: Beer Compo	sition and Taste			
Table 4: Beer Compo	sition and Taste			
Table 4: Beer Compo	sition and Taste	Meura 2001	Lauter Tun	
Table 4: Beer Compo	sition and Taste	Meura 2001	Lauter Tun	
	sition and Taste	Meura 2001	Lauter Tun	
Table 4: Beer Compos Beer Analysis Polyphenols	sition and Taste	Meura 2001	Lauter Tun	
Beer Analysis Polyphenols				
Beer Analysis	ppm	200	210	
Beer Analysis Polyphenols Total Nitrogen	ppm	200 700	210 695	
Beer Analysis Polyphenols Total Nitrogen Esters	ppm	200 700	210 695	
Beer Analysis Polyphenols Total Nitrogen Esters Degree of Fermentation	ppm ppm ppm	200 700 31.5	210 695 32	
Beer Analysis Polyphenols Total Nitrogen	ppm ppm ppm	200 700 31.5	210 695 32 85	

